
Research Article
Linearized and Kernelized Sparse Multitask Learning for
Predicting Cognitive Outcomes in Alzheimer’s Disease

Xiaoli Liu,1,2 Peng Cao ,1 Jinzhu Yang,1,2 and Dazhe Zhao1,2

1Computer Science and Engineering, Northeastern University, Shenyang, China
2Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China

Correspondence should be addressed to Peng Cao; caopeng@cse.neu.edu.cn

Received 4 August 2017; Revised 18 December 2017; Accepted 26 December 2017; Published 24 January 2018

Academic Editor: Peng Li

Copyright © 2018 Xiaoli Liu et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Alzheimer’s disease (AD) has been not only the substantial financial burden to the health care system but also the emotional
burden to patients and their families. Predicting cognitive performance of subjects from their magnetic resonance imaging (MRI)
measures and identifying relevant imaging biomarkers are important research topics in the study of Alzheimer’s disease. Recently,
the multitask learning (MTL) methods with sparsity-inducing norm (e.g., ℓ2,1-norm) have been widely studied to select the
discriminative feature subset fromMRI features by incorporating inherent correlations amongmultiple clinical cognitivemeasures.
However, these previous works formulate the prediction tasks as a linear regression problem. The major limitation is that they
assumed a linear relationship between the MRI features and the cognitive outcomes. Some multikernel-based MTL methods have
been proposed and shown better generalization ability due to the nonlinear advantage. We quantify the power of existing linear
and nonlinear MTL methods by evaluating their performance on cognitive score prediction of Alzheimer’s disease. Moreover, we
extend the traditional ℓ2,1-norm to a more general ℓ𝑞ℓ1-norm (𝑞 ≥ 1). Experiments on the Alzheimer’s Disease Neuroimaging
Initiative database showed that the nonlinear ℓ2,1ℓ𝑞-MKMTL method not only achieved better prediction performance than the
state-of-the-art competitive methods but also effectively fused the multimodality data.

1. Introduction

Alzheimer’s disease (AD) is a severe neurodegenerative dis-
order that results in a loss of mental function due to the
deterioration of brain tissue, leading directly to death [1]. It
accounts for 60–70% of age related dementia, affecting an
estimated 30 million individuals in 2011 and the number is
projected to be over 114 million by 2050 [2]. The cause of AD
is poorly understood and currently there is no cure for AD.
AD has a long preclinical phase, lasting a decade or more.
There is increasing research emphasis on detecting AD in the
preclinical phase, before the onset of the irreversible neuron
loss that characterizes the dementia phase of the disease,
since therapies/treatment are most likely to be effective in
this early phase. The Alzheimer’s Disease Neuroimaging
Initiative (ADNI, http://adni.loni.usc.edu/) has been facilitat-
ing the scientific evaluation of neuroimaging data including
magnetic resonance imaging (MRI) and positron emission
tomography (PET), along with other biomarkers and clinical

and neuropsychological assessments for predicting the onset
and progression of MCI (mild cognitive impairment) and
AD. Early diagnosis of AD is key to the development,
assessment, and monitoring of new treatments for AD.

Recently, rather than predicting categorical variables in
the classification, various studies started to estimate contin-
uous clinical variables from brain images. Therefore, instead
of classifying a subject into binary or multiple predetermined
categories or stages of the disease, regression focus is on esti-
mating continuous values which may help to assess patient’s
disease progression. The most commonly used cognitive
measures are Alzheimer’s Disease Assessment Scale (ADAS)
cognitive total score, MiniMental State Exam (MMSE) score,
and Rey Auditory Verbal Learning Test (RAVLT). Regression
analyses were commonly used to predict cognitive scores
from imagingmeasures.The relationship between commonly
used cognitive measures and structural changes with MRI
has been previously studied by regression models and the
results demonstrated that there exists a relationship between
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baseline MRI features and cognitive measures [3, 4]. For
example, Wan et al. proposed an elegant regression model
called CORNLIN that employs a sparse Bayesian learning
algorithm to predict multiple cognitive scores based on 98
structural MRI regions of interests (ROIs) for Alzheimer’s
disease patients. The polynomial model used in CORNLIN
can detect either a nonlinear or a linear relationship between
brain structure and cognitive decline [3]. Stonnington et al.
adopted relevance vector regression, a sparse kernel method
formulated in a Bayesian framework, to predict four sets
of cognitive scores using MRI voxel based morphometry
measures [4]. One of the biggest challenges in the prediction
of inferring cognitive outcomes with MRI is the high dimen-
sionality, which affects the computational performance and
leads to a wrong estimation and identification of the relevant
predictors. To reduce the high dimensionality and identify
the relevant biomarkers, the sparse methods have attracted
a great amount of research efforts in the neuroimaging field
due to its sparsity-inducing property. Ye et al. applied sparse
logistic regression with stability selection to ADNI data for
robust feature selection [5] and successfully predicted the
conversion fromMCI into probableADand identified a small
subset of biosignatures.

It is known that there exist inherent correlations among
multiple clinical cognitive variables of a subject. However,
manyworks do notmodel dependence relation betweenmul-
tiple tasks and neglect the correlation between clinical tasks
which is potentially useful. When the tasks are believed to be
related, learning multiple related tasks jointly can improve
the performance relative to learning each task separately.
Multitask learning (MTL) is a statistical learning framework
which aims at learning several models in a joint manner.
It has been commonly used to obtain better generalization
performance than learning each task individually [6, 7]. The
critical issues inMTL are to identify how the tasks are related
and build learning models to capture such task relatedness.
Themost recent studies [6, 8, 9] employed multitask learning
with ℓ2,1-norm [7] regularization and aimed to select features
that could predict all or most clinical scores. The ℓ2,1-
norm is chosen to be the regularization. Thus, the ℓ2,1-norm
regularized regression model is able to select some common
features across all the tasks. However, in these learning
methods, each task is traditionally performed by formulating
a linear regression problem, in which the cognitive score is a
linear function of the neuroimaging measures.

Kernel methods have been studied tomodel the cognitive
scores as nonlinear functions of neuroimaging measures.
Recently, many kernel-based classification or regression
methods with faster optimization speed or stronger gener-
alization performance have been proposed and investigated
by theoretically analyzing and experimentally evaluating [10,
11]. Multiple kernel learning (MKL) [12], which learns the
optimal kernel for a given task by a weighted, linear combina-
tion of predefined candidate kernels, has been introduced to
handle the problem of kernel selection. The multiple kernel
learning method not only learns an optimal combination of
given base kernels but also provides a flexible framework to
exploit the nonlinear relationship betweenMRImeasures and
cognitive scores.

In building the predictive model for classification or
regression in AD, kernel has been widely used; therefore,
it is important to extend the existing kernel-based learning
methods to the case of multitask learning. In this paper, we
propose two nonlinear multikernel-based multiple learning
methods in [13] for building regressionmodels, to exploit and
investigate the nonlinear relationship betweenMRImeasures
and cognitive scores. Moreover, an ℓ𝑞ℓ1-norm is used to
extend the traditional ℓ2ℓ1-norm. The goal of our work is to
(1) predict subjects’ cognitive scores in a number of neuropsy-
chological assessments using their MRI measures across the
entire brain, (2) identify what the performance of the nonlin-
ear method is compared with the linear ℓ𝑞ℓ1-normMTL and
other MTL methods with different assumption. No previous
studies have systematically and extensively examined the
prediction performance by linear MTL and nonlinear MTL
methods, and (3) identify what the learning capacity of the
multikernel framework on fusing multimodality data is.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a description of the multitask learning
formulation. A linearized MTL and two multikernel-based
MTL methods with ℓ𝑞ℓ1-norm are provided in Section 3. In
Section 4, we present the experimental results and compare
the performance of linearized and kernelized MTL methods
from the ADNI-1 dataset. The conclusion is drawn in Sec-
tion 5.

2. Multitask Learning

Consider amultitask learning (MTL) setting with𝑇 tasks. Let𝑝 be the number of covariates, shared across all the tasks, and𝑚 be the number of samples. Let𝑋 ∈ R𝑚×𝑝 denote thematrix
of covariates, 𝑌 ∈ R𝑚×𝑇 be the matrix of responses with each
row corresponding to a sample, and Θ ∈ R𝑝×𝑇 denote the
parameter matrix, with column 𝜃.𝑡 ∈ R𝑝 corresponding to
task 𝑡, 𝑡 = 1, . . . , 𝑇, and row 𝜃ℎ. ∈ R𝑇 corresponding to
feature ℎ, ℎ = 1, . . . , 𝑝.

The MTL formulation focuses on the following regular-
ized loss function:

min
Θ∈R𝑝×𝑇

𝐹 (𝑌,𝑋,Θ) + 𝜆𝑅 (Θ) , (1)

where 𝐹(⋅) denotes the loss function and 𝑅(⋅) is the regular-
izer. In the current context, we assume the loss to be square
loss; that is,

𝐹 (𝑌,𝑋,Θ) = ‖𝑌 − 𝑋Θ‖2𝐹 = 𝑚∑
𝑖=1

󵄩󵄩󵄩󵄩y𝑖 − x𝑖Θ󵄩󵄩󵄩󵄩22 , (2)

where y𝑖 ∈ R1×𝑇 and x𝑖 ∈ R1×𝑝 are the 𝑖th rows of 𝑌
and𝑋, respectively, corresponding to the multitask response
and covariates for the 𝑖th sample. We note that the MTL
framework can be easily extended to other loss functions.
Base on some prior knowledge, we then add penalty 𝑅(Θ) to
encode the relatedness among tasks.
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3. ℓ𝑞ℓ1-Norm Regularized Linearized Multitask
Learning, ℓ𝑞ℓ1-MTL

The ℓ2ℓ1-norm was popularly used in multitask feature
learning [14]. All the existing algorithms for multitask feature
learning assume a linear relationship between MRI features
and cognitive scores and aim to learn a common subset of
features for all tasks. Since the ℓ2ℓ1-norm regularizer imposes
the sparsity between all features and nonsparsity between
tasks, the features that are discriminative for all tasks will get
large weights. However, the ℓ2ℓ1-norm is a fixed nonadaptive
penalty. To obtain an adaptive regularization and better suit
different data structures, we extend the ℓ2,1-norm to a larger
class of mixed norm ℓ𝑞ℓ1 that can be adapted to the data. The
objective function of linear ℓ𝑞ℓ1-MTL is formulated:

min
Θ

12 ‖𝑌 − 𝑋Θ‖2𝐹 + 𝜆 ‖Θ‖𝑞,1 . (3)

When 𝑞 = 1, problem (3) reduces to the ℓ1-regularized
problem; when 𝑞 = 2, problem (3) reduces to the ℓ2,1-
regularized problem.

An efficient algorithm is based on the accelerated gradient
method for solving the ℓ𝑞ℓ1-regularized problem, which is
applicable for all values of 𝑞 larger than 1.

First, construct the following model for approximating
the composite functionM(⋅) at the point Θ(𝑙):

M𝐿,Θ(𝑙) (Θ) fl 𝐹 (Θ(𝑙)) + ⟨Θ − Θ(𝑙), ∇𝐹 (Θ(𝑙))⟩
+ 𝐿2 󵄩󵄩󵄩󵄩󵄩Θ − Θ(𝑙)󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝑅 (Θ) ,

(4)

where 𝐿 > 0. In the model M𝐿,Θ(𝑙)(Θ), apply the first-
order Taylor expansion at the point Θ (including all terms
in the square bracket) for the smooth loss function 𝐹(⋅),
and directly put the nonsmooth penalty 𝑅(⋅) into the model.
The regularization term (𝐿/2)‖Θ − Θ(𝑙)‖2𝐹 prevents Θ from
walking far away fromΘ(𝑙), and thus the model can be a good
approximation to Φ(Θ) in the neighborhood of Θ(𝑙), whereΦ(Θ) ≡ 𝐹(Θ) + 𝑅(Θ).

The accelerated gradient method is based on two
sequences {Θ(𝑙)} and {Γ(𝑙)} in which {Θ(𝑙)} is the sequence
of approximate solutions and {Γ(𝑙)} is the sequence of search
points.The search point Γ(𝑙) is the affine combination ofΘ(𝑙−1)
and Θ(𝑙) as

Γ(𝑙) = Θ(𝑙) + 𝛽(𝑙) (Θ(𝑙) − Θ(𝑙−1)) , (5)

where 𝛽(𝑙) is a properly chosen coefficient. The approximate
solution Θ(𝑙+1) is computed as the minimizer ofM𝐿(𝑙),Γ(𝑙)(Θ):

Θ(𝑙+1) = argmin
Θ

M𝐿(𝑙),Γ(𝑙) (Θ) , (6)

where 𝐿(𝑙) is determined by line search, for example, the
Armijo-Goldstein rule, so that 𝐿(𝑙) should be appropriate forΓ(𝑙).

The key subroutine is (6), which can be computed asΘ(𝑙+1) = 𝜋1𝑞(Γ(𝑙) − ∇𝐹(Γ(𝑙))/𝐿(𝑙), 𝜆/𝐿(𝑙)), where 𝜋1𝑞(⋅) is theℓ𝑞ℓ1-regularized Euclidean projection (EP1𝑞) problem:

𝜋1𝑞 (𝑉, 𝜆) = arg min
Θ∈R𝑝×𝑇

12 ‖Θ − 𝑉‖2𝐹 + 𝜆 𝑝∑
ℎ=1

󵄩󵄩󵄩󵄩𝜃ℎ.󵄩󵄩󵄩󵄩𝑞 . (7)

Note that the ℎ features in (7) are independent. In [15], the
method can be used for ease of different independent groups;
that is, 𝜋1𝑞(𝑉, 𝜆) = argmin𝑊∈R𝑛(1/2)‖𝑊−𝑉‖22+𝜆∑G

𝑖=1 ‖𝑤𝑖‖𝑞,
where G is the independent groups. In our paper, we focus
on how the method deals with multitask learning problem
in (7), where G is equal to 𝑝, and each group denotes the
corresponding feature shared across the multiple tasks.Thus,
the optimization in (7) decouples into a set of 𝑝 independentℓ𝑞-regularized Euclidean projection problems:

𝜋𝑞 (Vℎ.) = arg min
𝜃ℎ.∈R

𝑇

12 󵄩󵄩󵄩󵄩𝜃ℎ. − Vℎ.
󵄩󵄩󵄩󵄩22 + 𝜆 󵄩󵄩󵄩󵄩𝜃ℎ.󵄩󵄩󵄩󵄩𝑞 . (8)

Then, the optimal solution 𝜃∗ℎ. of (8) can be gotten as
follows:

if 󵄩󵄩󵄩󵄩Vℎ.󵄩󵄩󵄩󵄩𝑞 ≤ 𝜆,
𝜃∗ℎ. = 0;

else if 󵄩󵄩󵄩󵄩Vℎ.󵄩󵄩󵄩󵄩𝑞 ≥ 𝜆, 𝑞 = 1,
𝜃∗ℎ. = sgn (Vℎ.) ⊙max (󵄨󵄨󵄨󵄨Vℎ.󵄨󵄨󵄨󵄨 − 𝜆, 0) ;

else if 󵄩󵄩󵄩󵄩Vℎ.󵄩󵄩󵄩󵄩𝑞 ≥ 𝜆, 𝑞 = 2,
𝜃∗ℎ. =

󵄩󵄩󵄩󵄩Vℎ.󵄩󵄩󵄩󵄩2 − 𝜆󵄩󵄩󵄩󵄩Vℎ.󵄩󵄩󵄩󵄩2 Vℎ.;
else if 󵄩󵄩󵄩󵄩Vℎ.󵄩󵄩󵄩󵄩𝑞 ≥ 𝜆, 𝑞 = ∞,

𝜃∗ℎ. = sgn (Vℎ.) ⊙min (󵄨󵄨󵄨󵄨Vℎ.󵄨󵄨󵄨󵄨 , 𝑢∗) ;
else 󵄩󵄩󵄩󵄩Vℎ.󵄩󵄩󵄩󵄩𝑞 ≥ 𝜆, 1 < 𝑞 < ∞, 𝑞 ̸= 2,

𝜃∗ℎ. is the unique root of 𝜑Vℎ.𝑐∗ ,

(9)

where 𝑞 = 𝑞/(𝑞 − 1), and thus 𝑞 and 𝑞 satisfy the following
relationship: 1/𝑞 + 1/𝑞 = 1, 𝑢∗ is the unique root of 𝜁(𝑢) =∑𝑝ℎ=1max(|Vℎ.| − 𝑢, 0) − 𝜆, and 𝜁(⋅) is an auxiliary function,
defined as 𝜁V𝑐 (𝜃) = 𝜃 + 𝑐𝜃𝑞−1 − V with 0 ≤ 𝜃 ≤ V; And 𝜑V𝑐 (𝜃) =𝜃 + 𝑐𝜃(𝑞−1) − V, 0 < 𝑥 < V and 𝑐∗ = 𝜆‖𝜃∗ℎ.‖1−𝑞𝑞 . Note that
z = x ⊙ y denotes 𝑧𝑖 = 𝑥𝑖𝑦𝑖.

The algorithm ℓ𝑞ℓ1-MTL is summarized in Algorithm 1.

4. Kernelized Multitask Learning

4.1. Multikernel Learning. The limitation in this traditionalℓ2,1-normMTLmodel is that subjects cognitive score under a
task is modeled as a linear function of his/her MRI measures.
The kernel methods, for example, SVM or SVR, can model
the nonlinear distribution of the data by mapping the input
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Input: 𝜆 > 0, 𝐿(0) > 0,𝑋, 𝑌
Output: Θ.
(1) Initialize Θ(1) = Θ(0), 𝛼(−1) = 0, 𝛼(0) = 1 and 𝐿 = 𝐿(0).
(2) 𝑙 = 1
(3) repeat
(4) Set 𝛽(𝑙) = (𝛼(𝑙−2) − 1)/𝛼(𝑙−1), Γ(𝑙) = Θ(𝑙) + 𝛽(𝑙)(Θ(𝑙) − Θ(𝑙−1))
(5) Find the smalles 𝐿 = 𝐿(𝑙−1), 2𝐿(𝑙−1), . . . such thatΦ(Θ(𝑙+1)) ≤ M𝐿,Γ(𝑙) (Θ(𝑙+1)),

where Θ(𝑙+1) = argminΘM𝐿,Γ(𝑙) (Θ)
(6) 𝐿(𝑙) = 𝐿 and 𝛼(𝑙+1) = (1 + √1 + 4𝛼(𝑙)2)/2
(7) 𝑙 = 𝑙 + 1
(8) until convergence criterion is satisfied

Algorithm 1: ℓ𝑞ℓ1-MTL.

data into a nonlinear feature space by kernel embedding. In
this section, we consider the case that ℓ2,1-norm regularized
MTL is extended to kernel method. Let us define the kernel
function 𝜙𝑗(x) : R𝑝 → R𝑝, which maps the data samples
from an input space to a feature space (a high-dimensional
Hilbert space H), where 𝑝 denotes the dimensionality of
the feature space and x is a sample from the input space. A
kernel function 𝑘 is capable of attaining the inner product
of two mapped datasets in H: 𝑘(x, x󸀠) = 𝜙(x) ⋅ 𝜙(x󸀠) in the
original space without explicitly computing themapped data.
The associated Gram matrix has entries𝐾(𝑖, 𝑗) = 𝑘(x, x󸀠).

The most suitable types and parameters of the kernels
for a particular task are often unknown, and the selection
of the optimal kernel by exhaustive search on a predefined
pool of kernels is usually time-consuming and sometimes
causes overfitting. Multiple kernel learning (MKL) attempts
to achieve better results by combining several base kernels
instead of using only one specific kernel.MKL assumes that x𝑖
can be mapped to 𝑘 different Hilbert spaces, x𝑖 → 𝜙𝑗(x𝑖), 𝑗 =1, . . . , 𝑘, implicitly with 𝑘 nonlinear mapping functions,
and the objective of MKL is to seek the optimal kernel
combination 𝑘̂(x, x󸀠) = ∑𝑘𝑗=1 𝑑𝑗𝑘𝑗(𝑥, 𝑥󸀠), 𝑑𝑗 ≥ 0, ∑𝑘𝑗=1 𝑑𝑗 =1, where d is the kernel weight vector. The primal objective
function of multiple kernel regression model is written as
follows:

min
𝜃,𝜉

12
𝑘∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝜃𝑗󵄩󵄩󵄩󵄩󵄩22𝑑𝑗 + 𝜆2
𝑚∑
𝑖=1

𝜉2𝑖 ,

s.t. 𝑘∑
𝑗=1

𝜃𝑇𝑗 𝜙𝑗 (𝑥𝑖) − 𝑦𝑖 = 𝜉𝑖,
𝑘∑
𝑗=1

𝑑𝑗 = 1, 𝑑𝑗 ≥ 0.

(10)

MKL learns both the weights of the kernel combination
d and the parameters of the regression 𝜃 by solving a single
joint optimization problem.

Using 𝛼 to denote the Lagrange multipliers, the objective
value of the dual problem of (10) can be written as follows:

𝐽 (d) = max
𝛼

− 𝛼𝑇y𝑡 − 12𝛼𝑇K̂𝛼 − 12𝐶𝛼∗𝑇𝛼,
s.t. 𝑘∑

𝑗=1

𝑑𝑗 = 1, 𝑑𝑗 ≥ 0,
(11)

where K̂ = ∑𝑘𝑗=1 𝑑𝑗K𝑗 is the combined Gram matrix and𝐾𝑗, 𝑗 = 1, . . . , 𝑘, is the given set of base kernels.

4.2. ℓ𝑞ℓ1-Norm Regularized Multikernel Multitask Learn-
ing, ℓ𝑞ℓ1-MKMTL. We follow the multiple kernel learning
scheme and use the ℓ𝑞,1-norm to model the relationship
between the tasks to learn a common kernel representation
by imposing sparsity constraint on the kernel weight. The
method, called ℓ𝑞ℓ1-MKMTL, assumes that few base kernels
are important for the tasks and encourages a linear combi-
nation of only few kernels and assumes few selected kernels
are similar across the tasks.The formulation of ℓ𝑞ℓ1-MKMTL
can be expressed as follows:

min
𝜃,𝜉

12 (
𝑘∑
𝑗=1

( 𝑇∑
𝑡=1

󵄩󵄩󵄩󵄩󵄩𝜃𝑡𝑗󵄩󵄩󵄩󵄩󵄩𝑞2)
1/𝑞)

2

+ 𝜆2
𝑇∑
𝑡=1

𝑚𝑡∑
𝑖=1

𝜉2𝑡𝑖,

s.t. 𝑘∑
𝑗=1

𝜃𝑇𝑡𝑗𝜙𝑗 (𝑥𝑡𝑖) − 𝑦𝑡𝑖 = 𝜉𝑡𝑖.
(12)

We now rewrite this formulation in a convenient form
which can be efficiently solved using mirror-descent based
algorithms. We introduce some more notations: let Δ 𝑑,𝑟 ={z ≡ [𝑧1, . . . , 𝑧𝑑]𝑇 | ∑𝑑𝑖=1 𝑧𝑟𝑖 ≤ 1, 𝑧𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑑} and
with slight abuse of notation let Δ 𝑑,1 = Δ 𝑑⋅. Next, we note the
following [16].
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Lemma 1. Let 𝑎𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑑 and 1 < 𝑟 < ∞. Then, forΔ 𝑑,𝑟 defined as before,
min
𝜂∈Δ 𝑑,𝑟

∑
𝑖

𝑎𝑖𝜂𝑖 = (
𝑑∑
𝑖=1

𝑎𝑟/(𝑟+1)𝑖 )(𝑟+1)/𝑟 , (13)

and the minimum is attained at

𝜂𝑖 = 𝑎1/(𝑟+1)𝑖

(∑𝑑𝑖=1 𝑎𝑟/(𝑟+1)𝑖 )1/𝑟 , (14)

with the convention that 𝑎/0 is 0 if 𝑎 = 0 and is∞ if 𝑎 ̸= 0.
Using the result of the lemma (with 𝑟 = 1) and

introducing variables 𝜇 = [𝜇1, . . . , 𝜇𝑘]𝑇, we have

( 𝑘∑
𝑗=1

( 𝑇∑
𝑡=1

(󵄩󵄩󵄩󵄩󵄩𝜃𝑡𝑗󵄩󵄩󵄩󵄩󵄩2)𝑞)
1/𝑞)

2

= min
𝜇∈Δ 𝑘

𝑘∑
𝑗=1

(∑𝑇𝑡=1 (󵄩󵄩󵄩󵄩󵄩𝜃𝑡𝑗󵄩󵄩󵄩󵄩󵄩2)𝑞)2/𝑞𝜇𝑗 .
(15)

Now introducing dual variables ]𝑗 = []𝑗1, . . . , ]𝑗𝑇]𝑇, 𝑗 =1, . . . , 𝑘, and using the notion of dual norm [17], we obtain

( 𝑇∑
𝑡=1

(󵄩󵄩󵄩󵄩󵄩𝜃𝑡𝑗󵄩󵄩󵄩󵄩󵄩22)𝑞/2)
2/𝑞 = max

]𝑗∈Δ𝑇,𝑞

𝑇∑
𝑡=1

]𝑗𝑡
󵄩󵄩󵄩󵄩󵄩𝜃𝑡𝑗󵄩󵄩󵄩󵄩󵄩22 , (16)

where 𝑞 = 𝑞/(𝑞 − 2). With this, the objective in the ℓ𝑞ℓ1-
MKMTL formulation can now be written as

min
𝜇∈Δ 𝑘

min
𝜃,𝜉

max
]𝑗∈Δ𝑇,𝑞

12
𝑘∑
𝑗=1

∑𝑇𝑡=1 ]𝑗𝑡 󵄩󵄩󵄩󵄩󵄩𝜃𝑡𝑗󵄩󵄩󵄩󵄩󵄩22𝜇𝑗 + 𝜆2
𝑇∑
𝑡=1

𝑚𝑡∑
𝑖=1

𝜉2𝑡𝑖. (17)

Using 𝛼 to denote the Lagrange multipliers, this has the
Lagrangian

L = 12
𝑘∑
𝑗=1

∑𝑇𝑡=1 ]𝑗𝑡 󵄩󵄩󵄩󵄩󵄩𝜃𝑡𝑗󵄩󵄩󵄩󵄩󵄩22𝜇𝑗 + 𝜆2
𝑇∑
𝑡=1

𝑚𝑡∑
𝑖=1

𝜉2𝑡𝑖
+ 𝑇∑
𝑡=1

𝑚𝑡∑
𝑖=1

𝛼𝑡𝑖( 𝑘∑
𝑗=1

𝜃𝑇𝑡𝑗𝜙𝑗 (𝑥𝑡𝑖) − 𝑦𝑡𝑖 − 𝜉𝑡𝑖) .
(18)

Recall our foray into Lagrange duality. We can solve the
original problem by doing

max
𝛼

min
𝜃,𝜉

L (𝜃, 𝜉, 𝛼) . (19)

To begin, we attack the inner minimization: For fixed 𝛼,
we would like to solve for the minimizing 𝜃 and 𝜉. We can do
this by setting the derivatives ofLwith respect to 𝜉𝑡𝑖 and 𝜃 to
be zero. Doing this, we can find

𝜃∗𝑡𝑗 = −𝛼𝑇𝑡 [[
𝑘∑
𝑗=1

𝜇𝑗Φ𝑡𝑗
]𝑗𝑡

]
] , (20a)

𝜉∗𝑡𝑖 = 𝛼𝑡𝑖𝜆 , (20b)

where 𝛼𝑡 is a vector corresponding to the 𝑡th task in the ℓ𝑞ℓ1-
MKMTL formulation andΦ𝑡𝑗 is the datamatrixwith columns
as 𝜙𝑗(𝑥𝑡𝑖), 𝑖 = 1, . . . , 𝑚𝑡. So, we can solve the problem by
maximizing the Lagrangian (with respect to 𝛼), where we
substitute the above expressions for 𝜉 and 𝜃. Thus, we have
an unconstrained maximization.

max
𝛼

𝑇∑
𝑡=1

{{{−𝛼
𝑇
𝑡 𝑦𝑡 − 12𝛼𝑇𝑡 [[

𝑘∑
𝑗=1

𝜇𝑗𝐾𝑡𝑗
]𝑗𝑡

]
]𝛼𝑡 −

12𝜆𝛼𝑇𝑡 𝛼𝑡}}} . (21)

Here, y𝑡 is vector of scores of the 𝑡th task training data
points and K𝑖𝑗 represents the Gram matrix of the 𝑡th task
training data points with respect to the 𝑗th kernel. Equation
(21) is just a quadratic in 𝛼. As such, we can find the optimum
as the solution of a linear system.

Then, (17) can be written as follows:

min
𝜇∈Δ 𝑘

max
]𝑗∈Δ𝑇,𝑞

max
𝛼

𝑇∑
𝑡=1

{{{−𝛼
𝑇
𝑡 𝑦𝑡 − 12𝛼𝑇𝑡 [[

𝑘∑
𝑗=1

𝜇𝑗𝐾𝑡𝑗
]𝑗𝑡

]
]𝛼𝑡 −

12𝜆𝛼𝑇𝑡 𝛼𝑡}}} . (22)

The formulation can be transformed as follows:

min
𝜇∈Δ 𝑘

max
]𝑗∈Δ𝑇,𝑞

max
𝛼

𝑇∑
𝑡=1

{{{−𝛼
𝑇
𝑡 𝑦𝑡 − 12𝛼𝑇𝑡 [[

𝑘∑
𝑗=1

𝜇𝑗𝐾𝑡𝑗
]𝑗𝑡

]
]𝛼𝑡 −

12𝜆𝛼𝑇𝑡 𝛼𝑡}}} . (23)

The algorithm ℓ𝑞ℓ1-MKMTL is summarized in Algo-
rithm 2.

4.3. ℓ2,1-ℓ𝑞-Norm RegularizedMultikernelMultitask Learning,ℓ2,1ℓ𝑞-MKMTL. The linearized ℓ𝑞ℓ1-MTL assumed linear
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Input: 𝜆 > 0,𝑋, 𝑌
Output: 𝛼, ], 𝜇
(1) 𝑛 = 0
(2) repeat
(3) initiate 𝜇 and ]
(4) for 𝑡 = 1 to 𝑇 do
(5) With fixed 𝜇 and ], compute 𝛼∗𝑡 by using an SVR solver
(6) end for
(7) optimize 𝜇 with mirror-descent algorithm
(8) optimize ]: −∑𝑘𝑗=1min]𝑗 ∈ Δ𝑇,𝑞∑𝑇𝑡=1(𝐷𝑗𝑡/]𝑗𝑡) where𝐷𝑗𝑡 = (1/2)𝜇𝑗𝛼T

𝑡 𝐾𝑡𝑗𝛼𝑡.
(9) 𝑛 = 𝑛 + 1
(10) until convergence criterion is satisfied

Algorithm 2: ℓ𝑞ℓ1-MKMTL.

relationship between the MRI features and the cognitive
outcomes. Such a model is the lack of capability to capture
nonlinear predictive information from the features. Although
the ℓ𝑞ℓ1-MKMTL builds the nonlinear relationship for the
features and task by mapping to high-dimensional space, it
considers that tasks to be learned share a common subset
of kernel representations without capturing the interrelation-
ships between different cognitive measures over the feature
space.

To overcome the weaknesses of the previous two meth-
ods, we project the original feature vectors to a high-
dimensional space using multiple nonlinear mapping func-
tions for performing regression task in a nonlinear manner
and utilize multitask learning in the multiple kernel spaces
for modeling the disease’s cognitive scores with a joint ℓ2,1-ℓ𝑞 sparsity-inducing regularizers. Moreover, we construct
new features as orthogonal transforms of the given fea-
tures, that is, L𝑗𝜙𝑗(𝑥), where L𝑗 is an orthogonal matrix
which is to be learned. Again, low empirical risk over each
task would imply minimizing the following quadratic loss:∑𝑇𝑡=1∑𝑚𝑡𝑖=1min(∑𝑘𝑗=1 𝜃𝑇𝑡𝑗L𝑇𝑗 𝜙𝑗(𝑥𝑡𝑖)−𝑦𝑡𝑖)2. Before describing the
regularization term, we introduce some more notations: Let
the entries of 𝜃𝑡𝑗 be 𝜃𝑡𝑗𝑙, 𝑙 = 1, . . . , 𝑝𝑗, where 𝑝𝑗 is the
dimensionality of the feature space induced by the 𝑗th kernel.
By 𝜃.𝑗𝑙 we denote the vector with entries 𝜃𝑡𝑗𝑙, 𝑡 = 1, . . . , 𝑇.
The regularization term we employ is (∑𝑘𝑗=1(∑𝑝𝑗𝑙=1 ‖𝜃.𝑗𝑙‖2)𝑞)2/𝑞,
where 𝑞 ∈ [1, 2]. Different from ℓ𝑞ℓ1-MKMTL, the ℓ𝑞-norm
in ℓ2,1ℓ𝑞-MKMTL is employed over the kernels rather than
the tasks.

Mathematically, the ℓ2,1ℓ𝑞-MKMTL formulation can be
expressed as follows:

min
𝜃,𝜉,L

12 (
𝑘∑
𝑗=1

( 𝑝𝑗∑
𝑙=1

󵄩󵄩󵄩󵄩󵄩𝜃.𝑗𝑙󵄩󵄩󵄩󵄩󵄩2)
𝑞)
2/𝑞

+ 𝜆2
𝑇∑
𝑡=1

𝑚𝑡∑
𝑖=1

𝜉2𝑡𝑖,
s.t. 𝑘∑

𝑗=1

𝜃𝑇𝑡𝑗L𝑇𝑗 𝜙𝑗 (𝑥𝑡𝑖) − 𝑦𝑡𝑖 = 𝜉𝑡𝑖, L𝑗 ∈ 𝑂𝑝𝑗 ,
(24)

where 𝑂𝑝𝑗 represents the set of all orthogonal matrices of
dimensionality 𝑝𝑗. In the following text, we rewrite this
formulation in a form which is convenient to solve using an
MD based algorithm.

Using the result of Lemma 1 and introducing new vari-
ables ] = []1, . . . , ]𝑘]𝑇, we have

( 𝑘∑
𝑗=1

( 𝑝𝑗∑
𝑙=1

󵄩󵄩󵄩󵄩󵄩𝜃.𝑗𝑙󵄩󵄩󵄩󵄩󵄩2)
𝑞

)
2/𝑞

= min
]∈Δ 𝑘,𝑞

𝑘∑
𝑗=1

(∑𝑝𝑗𝑙=1 󵄩󵄩󵄩󵄩󵄩𝜃.𝑗𝑙󵄩󵄩󵄩󵄩󵄩2)2
]𝑗

, (25)

where 𝑞 = 𝑞/(2 − 𝑞). Again using the lemma and introducing
new variables 𝜇𝑗 = [𝜇𝑗1, . . . , 𝜇𝑗𝑝𝑗]𝑇, 𝑗 = 1, . . . , 𝑘, the
regularizer can be written as

min
]∈Δ 𝑘,𝑞

min
𝜇𝑗∈Δ𝑝𝑗

𝑇∑
𝑡=1

𝑘∑
𝑗=1

𝑝𝑗∑
𝑙=1

𝜃2𝑡𝑗𝑙𝜇𝑗𝑘]𝑗 . (26)

Now, we perform a change of variables: 𝜃𝑡𝑗𝑙/√𝜇𝑗𝑘]𝑗 =𝜃𝑡𝑗𝑙, 𝑙 = 1, . . . , 𝑝𝑗. Using this, one can rewrite the ℓ2,1ℓ𝑞-
MKMTL formulation as

min
],𝜇𝑗,L𝑗

𝑇∑
𝑡=1

min
𝜃𝑡 ,𝜉𝑡

12
𝑘∑
𝑗=1

𝜃𝑇𝑡𝑗𝜃𝑡𝑗 + 𝜆2
𝑇∑
𝑡=1

𝑚𝑡∑
𝑖=1

𝜉2𝑡𝑖,

s.t. 𝑘∑
𝑗=1

𝜃𝑇𝑡𝑗Λ1/2𝑗 L𝑇𝑗 𝜙𝑗 (𝑥𝑡𝑖) − 𝑦𝑡𝑖 = 𝜉𝑡𝑖,
] ∈ Δ 𝑘,𝑞, 𝜇𝑗 ∈ Δ𝑝𝑗 , L𝑗 ∈ 𝑂𝑝𝑗 ,

(27)

where Λ 𝑗 is a diagonal matrix with entries as ]𝑗𝜇𝑗𝑙, 𝑙 =1, . . . , 𝑝𝑗.
Now, using 𝛼 to denote the Lagrange multipliers, this has

the Lagrangian of

L = 𝑇∑
𝑡=1

(12
𝑘∑
𝑗=1

𝜃𝑇𝑡𝑗𝜃𝑡𝑗 + 𝜆2
𝑚𝑡∑
𝑖=1

𝜉2𝑡𝑖
+ 𝑚𝑡∑
𝑖=1

𝛼𝑡𝑖( 𝑘∑
𝑗=1

𝜃𝑇𝑡𝑗Λ1/2𝑗 L𝑇𝑗 𝜙𝑗 (𝑥𝑡𝑖) − 𝑦𝑡𝑖 − 𝜉𝑡𝑖)) .
(28)

This can be solved like ℓ𝑞ℓ1-MKMTL:

𝜃∗𝑡𝑗 = −𝛼𝑇𝑡 Λ1/2𝑗 L𝑇𝑗Φ𝑡𝑗, (29a)

𝜉∗𝑡𝑖 = 𝛼𝑡𝑖𝜆 . (29b)
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Input:𝑋, 𝑌, 𝜆 > 0
Output: 𝛼∗,Q
(1) repeat
(2) optimize Q with mirror-descent algorithm
(3) for 𝑡 = 1 to 𝑇 do
(4) with fixedQ, compute 𝛼∗𝑡 by using an SVR solver
(5) end for
(6) 𝑛 = 𝑛 + 1
(7) until convergence criterion is satisfied

Algorithm 3: ℓ2,1-ℓ𝑞-MKMTL.

Again, we substitute the above expressions for 𝜉 and 𝜃.
Thus, we have the following form:

min
],𝜇𝑗,L𝑗

𝑇∑
𝑡=1

max
𝛼𝑡

− 𝛼𝑇𝑡 𝑦𝑡 − 12𝛼𝑇𝑡 (
𝑘∑
𝑗=1

Φ𝑇𝑡𝑗L𝑇𝑗Λ 𝑗L𝑗Φ𝑡𝑗)𝛼𝑡
− 12𝜆𝛼𝑇𝑡 𝛼𝑡

s.t. ] ∈ Δ 𝑘,𝑞, 𝜇𝑗 ∈ Δ𝑝𝑗 , L𝑗 ∈ 𝑂𝑝𝑗 .
(30)

Denoting L𝑇𝑗Λ 𝑗L𝑗 by Q𝑗 and eliminating variables ], 𝜇,
and L’s lead to

min
Q

𝑇∑
𝑡=1

max
𝛼𝑡

− 𝛼𝑇𝑡 𝑦𝑡 − 12𝛼𝑇𝑡 (
𝑘∑
𝑗=1

Φ𝑇𝑡𝑗Q𝑗Φ𝑡𝑗)𝛼𝑡
− 12𝜆𝛼𝑇𝑡 𝛼𝑡

s.t. Q𝑗 ⪰ 0, 𝑘∑
𝑗=1

(tr (Q𝑗))𝑞 ≤ 1.
(31)

The difficulty in working with this formulation is that the
explicit mappings 𝜙𝑗’s are required. We now describe a way
of overcoming this problem and efficiently kernelizing the
formulation (refer to [1] also). Let Φ𝑗 ≡ [Φ1𝑗, . . . , Φ𝑇𝑗] and
the compact SVD of Φ𝑗 be U𝑗Σ𝑗V𝑇𝑗 . Then, we introduce a
symmetric positive semidefiniteQ𝑗with the same rank as that
of Φ𝑗 such that Q𝑗 = U𝑗Q𝑗U𝑇𝑗 . By eliminating Q𝑗, we can
rewrite the above problem usingQ𝑗 as

min
Q

𝑇∑
𝑡=1

max
𝛼𝑡

− 𝛼𝑇𝑡 𝑦𝑡 − 12𝛼𝑇𝑡 (
𝑘∑
𝑗=1

M𝑇𝑡𝑗Q𝑗M𝑡𝑗)𝛼𝑡
− 12𝜆𝛼𝑇𝑡 𝛼𝑡

s.t. Q𝑗 ⪰ 0, 𝑘∑
𝑗=1

(tr (Q𝑗))𝑞 ≤ 1,
(32)

where M𝑡𝑗 = Σ−1𝑗 V𝑇𝑗Φ𝑇𝑗Φ𝑡𝑗. Note that calculation of M𝑡𝑗
does not require the kernel-induced features explicitly and

hence the formulation is kernelized. It can be transformed as
follows:

min
Q

𝑓 (Q) = 𝑇∑
𝑡=1

− 𝛼𝑇𝑡 𝑦𝑡 − 12 tr (QB) − 12𝜆𝛼𝑇𝑡 𝛼𝑡, (33)

where B is a block diagonal matrix with entries as B𝑗 =∑𝑇𝑡=1M𝑡𝑗𝛼𝑡𝛼𝑇𝑡 M𝑇𝑡𝑗.
Q can be solved by mirror-descent. The gradient of ∇𝑓

with respect to Q is calculated as follows:

∇𝑓 (Q(𝑙)) = −12B(𝑙), (34)

where B(𝑙) is the value obtained using optimal 𝛼𝑡 obtained
while evaluating 𝑓(Q(𝑙)).

The algorithm ℓ2,1-ℓ𝑞 MKMTL is summarized in Algo-
rithm 3.

5. Experimental Results and Discussions

5.1. Experimental Setup. We use 10-fold cross valuation to
evaluate our model and conduct the comparison. In each
of ten trials, a 5-fold nested cross validation procedure is
employed to tune the regularization parameters. Data was 𝑧-
scored before applying regressionmethods.The range of each
parameter varied from 10−1 to 103. The candidate kernels are
as follows: six different kernel bandwidths (2−2, 2−1, . . . , 23),
polynomial kernels of degrees 1 to 3, and a linear kernel,
which totally yields 10 kernels. The kernel matrices were
precomputed and normalized to have unit trace.The reported
results were the best results of each method with the optimal
parameter. For the quantitative performance evaluation, we
employed the metrics of Correlation Coefficient (CC) and
RootMean SquaredError (rMSE) between the predicted clin-
ical scores and the target clinical scores for each regression
task. Moreover, to evaluate the overall performance on all the
tasks, the normalized mean squared error (nMSE) [7, 18] and
weighted R-value (wR) [4] are used. The nMSE and wR are
defined as follows:

nMSE (𝑌, 𝑌̂) = ∑𝑇𝑡=1 (󵄩󵄩󵄩󵄩󵄩𝑌𝑡 − 𝑌̂𝑡󵄩󵄩󵄩󵄩󵄩22 /𝜎 (𝑌𝑡))∑𝑇𝑡=1𝑚𝑡 , (35)

wR (𝑌, 𝑌̂) = ∑𝑇𝑡=1 Corr (𝑌𝑡, 𝑌̂𝑡)𝑚𝑡∑𝑇𝑡=1𝑚𝑡 , (36)
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where 𝑌 and 𝑌̂ are the ground truth cognitive scores and the
predicted cognitive scores, respectively.

A smaller (higher) value of nMSE and rMSE (CC and
wR) represents better regression performance. We report
the mean and standard deviation based on 10 iterations of
experiments on different splits of data for all comparable
experiments.

In ADNI, all participants received 1.5-Tesla (T) structural
MRI. The MRI features used in our experiments are based
on the imaging data from the ADNI database processed
by a team from UCSF (University of California at San
Francisco), who performed cortical reconstruction and vol-
umetric segmentations with the FreeSurfer image analysis
suite (http://surfer.nmr.mgh.harvard.edu/) according to the
atlas generated in [19]. Totally, 48 cortical regions and 44
subcortical regions are generated. For each cortical region,
the cortical thickness average (TA), standard deviation of
thickness (TS), surface area (SA), and cortical volume (CV)
were calculated as features. For each subcortical region,
subcortical volume was calculated as features. The SA of
left and right hemisphere and total intracranial volume
(ICV) were also included. This yielded a total of 𝑝 = 319
MRI features extracted from cortical/subcortical ROIs in
each hemisphere (including 275 cortical and 44 subcortical
features). Details of the analysis procedure are available at
http://adni.loni.usc.edu/methods/mri-analysis/.

Ten widely used clinical/cognitive assessment scores [3,
20, 21] were employed in this study, including Alzheimer’s
Disease Assessment Scale (ADAS) cognitive total score, Mini
Mental State Exam (MMSE) score, Rey Auditory Verbal
Learning Test (RAVLT) involving total score of the first
5 learning trials (TOTAL), Trial 6 total number of words
recalled (TOT6), 30-minute delay score (T30), and 30-minute
delay recognition score (RECOG), FLU involving animal
total score (ANIM) and vegetable total score (VEG), and
TRAILS including Trail Making test A score and B score.

5.2. Comparison with the State-of-the-Art MTL Methods. To
compare the kernelized MTL with the other linearized one
and illustrate how well the two multikernel-based MTL
methods work by means of modeling the correlation among
the tasks, we comprehensively compare our proposed meth-
ods with several popular state-of-the-art related methods.
Representative comparable algorithms include

(1) Ridge [22]: minΘ 𝐿(𝑋, 𝑌,Θ) + 𝜆‖Θ‖2𝐹
(2) Lasso [23]: minΘ 𝐿(𝑋, 𝑌,Θ) + 𝜆‖Θ‖1
(3) MKL [24]: min𝜃,𝜉 (1/2)‖𝑓‖2H + 𝜆∑𝑖 𝜉𝑖, such that𝑦𝑖(𝑓(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0, ∀𝑖
(4) Robust Multitask Feature Learning (RMTL) [25]:

RMTL (minΘ 𝐿(𝑋, 𝑌,Θ) + 𝜆1‖𝑃‖∗ + 𝜆2‖𝑆‖2,1, subject
toΘ = 𝑃+𝑆), which assumes that the modelΘ can be
decomposed into two components: a shared feature
structure 𝑃 capturing task relatedness and a group-
sparse structure 𝑆 detecting outliers

(5) Clustered Multitask Learning (CMTL) [16]:
CMTL (minΘ,𝑀:𝑀𝑇𝑀=𝐼𝑐 𝐿(𝑋, 𝑌,Θ) + 𝜆1(tr(Θ𝑇Θ) −
tr(𝑀𝑇Θ𝑇Θ𝑀)) + 𝜆2tr(Θ𝑇Θ), where 𝑀 ∈ R𝑐×𝑘 is

an orthogonal cluster indicator matrix and the tasks
are clustered into 𝑐 < 𝑘 clusters) incorporating a
regularization term to induce clustering between
tasks and then sharing information only to tasks
belonging to the same cluster. In the CMTL, the
number of clusters is set to 11 since the 20 tasks
belong to 11 sets of cognitive functions

(6) Trace-norm regularized multitask learning (Trace)
[17]: assuming that all models share a common low-
dimensional subspace (minΘ 𝐿(𝑋, 𝑌,Θ) + 𝜆‖Θ‖∗)

(7) Sparse regularized multitask learning formulation
(SRMTL) [26]: SRMTL (minΘ 𝐿(𝑋, 𝑌,Θ) +𝜆1‖ΘZ‖2𝐹+𝜆2‖Θ‖1, whereZ ∈ R𝑇×𝑇) containing two
regularization processes: (1) all tasks are regularized
by their mean value, and therefore knowledge from
one task can be utilized by other tasks via the mean
value; (2) sparsity is enforced in the learning withℓ1-norm.

Experimental results are reported in Tables 1 and 2
where the best results are boldfaced. A first glance at the
results shows that ℓ2,1ℓ𝑞-MKMTL generally outperforms all
the other compared methods on both metrics and across
all the cognitive tasks. Additionally, a statistical analysis is
performed on the results. As can be seen, our proposed
method achieves statistically significant results compared to
all the other methods on most of the results. These results
reveal several interesting points:

(1) All the compared multitask learning methods (ℓ𝑞ℓ1-
MTL, ℓ𝑞ℓ1-MKMTL, and ℓ2,1ℓ𝑞-MKMTL) improve
the predictive performance over the independent
regression algorithms (Ridge, Lasso, and MKL). This
justifies the motivation of learning multiple tasks
simultaneously.

(2) The two multikernel-based MTL methods outper-
form the linearized ℓ𝑞ℓ1-MTL in terms of nMSE, andℓ2,1ℓ𝑞-MKMTL outperforms the linearized ℓ𝑞ℓ1-MTL
in terms of wR. It indicates that the nonlinear MTL
models via kernel functions can capture complex
patterns between brain images and the corresponding
cognitive measures.

(3) By the appropriate ℓ2,1ℓ𝑞 regularization, the ℓ2,1ℓ𝑞-
MKMTL model enables us (1) to obtain capture
nonlinear associations between MRI and cognitive
outcomes, (2) to obtain the intrinsic relationships
between multiple related tasks in H, and (3) to
promote the sparse kernel combinations to support
the interpretability and scalability. The outcomes
demonstrate that ℓ2,1ℓ𝑞-MKMTL outperforms ℓ𝑞ℓ1-
MTL and ℓ𝑞ℓ1-MKMTL, both of which neglect the
inherently nonlinear relationship between MRI and
cognitive outcomes, and the correlation among mul-
tiple related tasks in the feature space.

(4) Compared with the othermultitask learningmethods
with different assumptions, our proposed methods
belong to themultitask feature learningmethods with

http://surfer.nmr.mgh.harvard.edu/
http://adni.loni.usc.edu/methods/mri-analysis/
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Table 1: Performance comparison of various methods in terms of rMSE and nMSE on 10 cross validation cognitive prediction tasks.

Method ADAS MMSE RAVLT
TOTAL TOT6 T30 RECOG

Ridge 7.556 ± 0.294 2.656 ± 0.134 11.41 ± 0.498 3.907 ± 0.236 4.052 ± 0.224 4.331 ± 0.294
Lasso 6.846 ± 0.361 2.216 ± 0.098 10.02 ± 0.548 3.320 ± 0.195 3.443 ± 0.177 3.639 ± 0.213
MKL 6.893 ± 0.528 2.214 ± 0.106 9.911 ± 0.695 3.424 ± 0.296 3.570 ± 0.340 3.745 ± 0.237
Robust MTL 7.651 ± 0.442 3.326 ± 0.266 11.02 ± 0.590 3.574 ± 0.235 3.704 ± 0.171 3.858 ± 0.310
CMTL 7.642 ± 0.373 3.083 ± 0.461 11.56 ± 0.510 3.907 ± 0.260 4.038 ± 0.244 4.381 ± 0.226
Trace 8.180 ± 0.605 6.113 ± 2.038 13.09 ± 3.128 3.782 ± 0.491 3.906 ± 0.431 4.520 ± 0.859
SRMTL 6.882 ± 0.325 2.331 ± 0.271 9.961 ± 0.561 3.320 ± 0.152 3.445 ± 0.116 3.639 ± 0.261ℓ𝑞ℓ1-MTL 6.772 ± 0.312 2.206 ± 0.081 9.606 ± 0.448 3.344 ± 0.154 3.440 ± 0.151 3.644 ± 0.247ℓ𝑞ℓ1-MKMTL 6.825 ± 0.455 2.417 ± 0.197 9.699 ± 0.505 3.396 ± 0.188 3.495 ± 0.144 3.653 ± 0.243ℓ2,1ℓ𝑞-MKMTL 6.806 ± 0.447 2.185 ± 0.106 9.628 ± 0.510 3.331 ± 0.196 3.467 ± 0.172 3.627 ± 0.199

Method FLU TRAILS nMSE
ANIM VEG A B

Ridge 6.521 ± 0.418 4.322 ± 0.178 27.18 ± 1.702 83.72 ± 5.713 16.44 ± 1.725
Lasso 5.352 ± 0.447 3.701 ± 0.093 23.75 ± 1.398 71.23 ± 2.812 12.05 ± 0.758
MKL 5.342 ± 0.510 3.761 ± 0.137 24.71 ± 1.781 78.09 ± 6.916 13.56 ± 1.133
Robust MTL 5.946 ± 0.398 3.988 ± 0.083 27.78 ± 1.922 90.12 ± 7.098 17.68 ± 2.303
CMTL 6.608 ± 0.561 4.398 ± 0.284 27.46 ± 1.980 83.66 ± 5.418 16.67 ± 1.912
Trace 6.743 ± 1.425 4.672 ± 0.778 28.82 ± 3.278 89.68 ± 7.838 20.23 ± 5.215
SRMTL 5.327 ± 0.334 3.713 ± 0.088 25.09 ± 1.421 80.00 ± 4.637 14.01 ± 1.169ℓ𝑞ℓ1-MTL 5.298 ± 0.439 3.704 ± 0.096 23.42 ± 1.110 71.32 ± 2.945 11.92 ± 0.969ℓ𝑞ℓ1-MKMTL 5.304 ± 0.350 3.676 ± 0.094 23.09 ± 1.438 70.28 ± 0.898 11.72 ± 0.222ℓ2,1ℓ𝑞-MKMTL 5.232 ± 0.434 3.675 ± 0.157 23.13 ± 1.473 69.82 ± 1.236 11.56 ± 0.602

Table 2: Performance comparison of various methods in terms of CC and wR on 10 cross validation cognitive prediction tasks.

Method ADAS MMSE RAVLT
TOTAL TOT6 T30 RECOG

Ridge 0.603 ± 0.031 0.407 ± 0.040 0.401 ± 0.084 0.361 ± 0.092 0.377 ± 0.096 0.261 ± 0.080
Lasso 0.655 ± 0.036 0.540 ± 0.046 0.493 ± 0.084 0.507 ± 0.100 0.523 ± 0.106 0.416 ± 0.087
MKL 0.658 ± 0.030 0.544 ± 0.052 0.502 ± 0.066 0.476 ± 0.095 0.506 ± 0.105 0.391 ± 0.072
Robust MTL 0.587 ± 0.022 0.338 ± 0.084 0.423 ± 0.090 0.432 ± 0.096 0.444 ± 0.094 0.354 ± 0.105
CMTL 0.603 ± 0.025 0.381 ± 0.042 0.397 ± 0.072 0.362 ± 0.090 0.381 ± 0.099 0.260 ± 0.068
Trace 0.548 ± 0.039 0.144 ± 0.091 0.342 ± 0.172 0.395 ± 0.159 0.402 ± 0.142 0.253 ± 0.130
SRMTL 0.655 ± 0.034 0.525 ± 0.058 0.492 ± 0.079 0.505 ± 0.097 0.523 ± 0.103 0.413 ± 0.092ℓ𝑞ℓ1-MTL 0.662 ± 0.043 0.532 ± 0.056 0.532 ± 0.082 0.492 ± 0.109 0.522 ± 0.105 0.404 ± 0.091ℓ𝑞ℓ1-MKMTL 0.661 ± 0.034 0.460 ± 0.099 0.519 ± 0.072 0.470 ± 0.089 0.494 ± 0.094 0.412 ± 0.090ℓ2,1ℓ𝑞-MKMTL 0.660 ± 0.035 0.547 ± 0.045 0.529 ± 0.079 0.500 ± 0.095 0.508 ± 0.094 0.421 ± 0.075

Method FLU TRAILS wR
ANIM VEG A B

Ridge 0.185 ± 0.090 0.396 ± 0.073 0.291 ± 0.097 0.330 ± 0.110 0.361 ± 0.041
Lasso 0.365 ± 0.096 0.506 ± 0.059 0.363 ± 0.041 0.467 ± 0.096 0.484 ± 0.049
MKL 0.375 ± 0.071 0.496 ± 0.067 0.374 ± 0.056 0.457 ± 0.060 0.478 ± 0.046
Robust MTL 0.253 ± 0.096 0.443 ± 0.057 0.282 ± 0.113 0.292 ± 0.123 0.385 ± 0.038
CMTL 0.180 ± 0.089 0.390 ± 0.071 0.287 ± 0.116 0.335 ± 0.112 0.358 ± 0.036
Trace 0.212 ± 0.143 0.331 ± 0.112 0.270 ± 0.112 0.290 ± 0.122 0.319 ± 0.083
SRMTL 0.362 ± 0.093 0.503 ± 0.064 0.340 ± 0.063 0.361 ± 0.095 0.468 ± 0.045ℓ𝑞ℓ1-MTL 0.379 ± 0.076 0.501 ± 0.063 0.399 ± 0.060 0.467 ± 0.098 0.489 ± 0.050ℓ𝑞ℓ1-MKMTL 0.381 ± 0.080 0.521 ± 0.067 0.421 ± 0.064 0.481 ± 0.076 0.482 ± 0.047ℓ2,1ℓ𝑞-MKMTL 0.409 ± 0.073 0.516 ± 0.065 0.417 ± 0.067 0.490 ± 0.087 0.500 ± 0.043
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Table 3: Performance comparison of variousmethods with fusingmultiplemodalities data in terms of rMSE and nMSE on 10 cross validation
cognitive prediction tasks.

Method ADAS MMSE FLU TRAILS
ANIM A Bℓ𝑞ℓ1-MTL-MRI 6.494 ± 1.029 1.964 ± 0.306 4.911 ± 0.256 16.39 ± 2.906 55.82 ± 7.689ℓ𝑞ℓ1-MTL-PET 6.941 ± 1.244 2.118 ± 0.298 5.192 ± 0.145 16.56 ± 3.533 56.88 ± 9.447ℓ𝑞ℓ1-MTL-MP 6.219 ± 1.037 2.067 ± 0.293 4.928 ± 0.260 16.09 ± 2.768 53.70 ± 7.144ℓ𝑞ℓ1-MTL-ALL 6.174 ± 0.978 2.062 ± 0.272 4.789 ± 0.206 15.97 ± 2.785 53.37 ± 7.243ℓ𝑞ℓ1-MKMTL-MRI 6.369 ± 0.941 2.074 ± 0.291 4.993 ± 0.235 16.18 ± 3.089 55.95 ± 9.479ℓ𝑞ℓ1-MKMTL-PET 6.812 ± 1.155 2.060 ± 0.364 5.151 ± 0.227 16.61 ± 3.588 57.85 ± 11.24ℓ𝑞ℓ1-MKMTL-MP 6.112 ± 0.886 2.005 ± 0.258 4.966 ± 0.269 16.13 ± 2.988 54.13 ± 9.450ℓ𝑞ℓ1-MKMTL-ALL 5.960 ± 0.834 1.959 ± 0.256 4.821 ± 0.224 16.00 ± 3.062 53.48 ± 9.592ℓ2,1ℓ𝑞-MKMTL-MRI 6.425 ± 0.951 1.951 ± 0.308 4.886 ± 0.264 16.11 ± 2.939 54.96 ± 7.499ℓ2,1ℓ𝑞-MKMTL-PET 6.783 ± 1.059 2.058 ± 0.323 5.107 ± 0.258 16.52 ± 3.515 55.51 ± 9.568ℓ2,1ℓ𝑞-MKMTL-MP 6.086 ± 0.987 1.917 ± 0.299 4.855 ± 0.249 15.95 ± 2.996 52.44 ± 8.074ℓ2,1ℓ𝑞-MKMTL-ALL 6.034 ± 0.978 1.905 ± 0.294 4.809 ± 0.244 15.88 ± 3.028 52.20 ± 8.120

Method RAVLT nMSE
TOTAL TOT6 T30 RECOGℓ𝑞ℓ1-MTL-MRI 10.18 ± 0.640 3.538 ± 0.147 3.735 ± 0.199 3.169 ± 0.306 10.24 ± 0.735ℓ𝑞ℓ1-MTL-PET 10.41 ± 0.441 3.627 ± 0.140 3.796 ± 0.176 3.258 ± 0.360 10.72 ± 1.163ℓ𝑞ℓ1-MTL-MP 10.01 ± 0.556 3.501 ± 0.149 3.693 ± 0.196 3.164 ± 0.314 9.710 ± 0.627ℓ𝑞ℓ1-MTL-ALL 9.755 ± 0.575 3.450 ± 0.151 3.643 ± 0.200 3.172 ± 0.313 9.525 ± 0.608ℓ𝑞ℓ1-MKMTL-MRI 10.09 ± 0.605 3.532 ± 0.081 3.731 ± 0.253 3.203 ± 0.304 10.21 ± 1.019ℓ𝑞ℓ1-MKMTL-PET 10.30 ± 0.436 3.592 ± 0.145 3.754 ± 0.231 3.200 ± 0.357 10.82 ± 1.455ℓ𝑞ℓ1-MKMTL-MP 9.787 ± 0.375 3.471 ± 0.089 3.664 ± 0.199 3.159 ± 0.302 9.713 ± 0.968ℓ𝑞ℓ1-MKMTL-ALL 9.350 ± 0.460 3.402 ± 0.030 3.604 ± 0.221 3.196 ± 0.291 9.410 ± 0.985ℓ2,1ℓ𝑞-MKMTL-MRI 9.984 ± 0.525 3.477 ± 0.130 3.678 ± 0.204 3.143 ± 0.314 9.937 ± 0.753ℓ2,1ℓ𝑞-MKMTL-PET 10.19 ± 0.410 3.565 ± 0.146 3.745 ± 0.212 3.191 ± 0.351 10.31 ± 1.105ℓ2,1ℓ𝑞-MKMTL-MP 9.727 ± 0.467 3.397 ± 0.136 3.593 ± 0.162 3.112 ± 0.323 9.282 ± 0.869ℓ2,1ℓ𝑞-MKMTL-ALL 9.561 ± 0.442 3.361 ± 0.124 3.556 ± 0.170 3.104 ± 0.327 9.160 ± 0.860

sparsity-inducing norms, having an advantage over
the other comparative multitask learning methods.
Since not all the brain regions are associated with AD,
many of the features are irrelevant and redundant.
Sparse based MTL methods are appropriate for the
task of predicting cognitive measures and better than
the non-sparse-based MTL methods.

We also show the scatter plots of actual values versus
predicted values for the score of ADAS, MMSE, TOTAL, and
ANIM on testing data in Figure 1.

5.3. Multimodalities Fusion. To estimate the effect of com-
bining multimodality image data with the linearized and
kernelizedMTLmethods and provide amore comprehensive
comparison of the results from the comparable MTLmodels,
we further perform some experiments, and they are (1)
using only MRI modality, (2) using only PET modality, (3)
combining two modalities: PET and MRI (MP), and (4)
combining three modalities: PET, MRI, and demographic
information including age, gender, years of education, and

ApoE genotyping (MPD). Different from the above experi-
ments, the samples from ADNI-2 are used instead of ADNI-
1, since the amount of the patients with PET is sufficient.
From the ADNI-2, we obtained all the patients with both
MRI and PET, totally 756 samples. The PET imaging data
are from the ADNI database processed by the UC Berkeley
team, who use a native-space MRI scan for each subject
that is segmented and parcellated with FreeSurfer to gen-
erate a summary cortical and subcortical ROI, and they
coregister each florbetapir scan to the corresponding MRI
and calculate the mean florbetapir uptake within the cortical
and reference regions. The procedure of image processing
is described in http://adni.loni.usc.edu/updated-florbetapir-
av-45-pet-analysis-results/. In the ℓ𝑞ℓ1-MKMTL and ℓ2,1ℓ𝑞-
MKMTL, ten different kennel functions described in the first
experiment are used for each modality. To show the advan-
tage of the kernel-based methods, we compare them with
linear ℓ𝑞ℓ1-MTL method, which concatenated the multiple
modalities features into a long vector features.

The prediction performance results are shown in Tables
3 and 4. From the results, it is clear that the methods with

http://adni.loni.usc.edu/updated-florbetapir-av-45-pet-analysis-results/
http://adni.loni.usc.edu/updated-florbetapir-av-45-pet-analysis-results/
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Figure 1: Scatter plots of actual versus predicted values of cognitive scores on each fold testing data using three comparable MTL methods
based on MRI features.

multimodality outperform the methods using one single
modality of data. This validates our assumption that the
complementary information among different modalities is
helpful for cognitive function prediction. Regardless of two
or three modalities, ℓ2,1ℓ𝑞-MKMTL achieved better perfor-
mances than the linear based multitask learning for the most
cases, the same as for the single modality learning task above.

6. Conclusion
Many multitask learning methods with sparsity-inducing
regularization for modeling AD cognitive outcomes have

been proposed in the past decades. However, the current
formulations remain restricted to the linear models and
cannot capture the relationship between the MRI features
and cognitive outcomes. To address these shortcomings, we
applied two multikernel multitask learning methods with
a joint sparsity-inducing regularization to model the more
complicated but more flexible relationship between MRI
features and cognitive outcomes and demonstrated their
effectiveness compared with linearized multitask learning
methods by applying them to the ADNI data for predicting
cognitive outcomes from MRI scans. Extensive experiments
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Table 4: Performance comparison of various methods with fusing multiple modalities data in terms of CC and wR on 10 cross validation
cognitive prediction tasks.

Method ADAS MMSE FLU TRAILS
ANIM A Bℓ𝑞ℓ1-MTL-MRI 0.670 ± 0.091 0.539 ± 0.117 0.481 ± 0.112 0.417 ± 0.115 0.525 ± 0.073ℓ𝑞ℓ1-MTL-PET 0.619 ± 0.058 0.482 ± 0.087 0.395 ± 0.105 0.385 ± 0.120 0.501 ± 0.060ℓ𝑞ℓ1-MTL-MP 0.700 ± 0.070 0.549 ± 0.108 0.486 ± 0.119 0.437 ± 0.119 0.567 ± 0.070ℓ𝑞ℓ1-MTL-ALL 0.705 ± 0.067 0.560 ± 0.096 0.527 ± 0.102 0.450 ± 0.115 0.575 ± 0.064ℓ𝑞ℓ1-MKMTL-MRI 0.677 ± 0.093 0.512 ± 0.113 0.464 ± 0.095 0.411 ± 0.113 0.529 ± 0.094ℓ𝑞ℓ1-MKMTL-PET 0.634 ± 0.056 0.493 ± 0.100 0.410 ± 0.133 0.375 ± 0.090 0.478 ± 0.061ℓ𝑞ℓ1-MKMTL-MP 0.710 ± 0.060 0.537 ± 0.106 0.472 ± 0.111 0.426 ± 0.105 0.566 ± 0.081ℓ𝑞ℓ1-MKMTL-ALL 0.727 ± 0.062 0.551 ± 0.112 0.512 ± 0.097 0.444 ± 0.099 0.582 ± 0.065ℓ2,1ℓ𝑞-MKMTL-MRI 0.673 ± 0.096 0.548 ± 0.124 0.491 ± 0.095 0.422 ± 0.135 0.528 ± 0.102ℓ2,1ℓ𝑞-MKMTL-PET 0.631 ± 0.057 0.488 ± 0.108 0.418 ± 0.119 0.386 ± 0.095 0.524 ± 0.065ℓ2,1ℓ𝑞-MKMTL-MP 0.714 ± 0.067 0.566 ± 0.107 0.499 ± 0.094 0.437 ± 0.122 0.583 ± 0.077ℓ2,1ℓ𝑞-MKMTL-ALL 0.721 ± 0.064 0.574 ± 0.105 0.512 ± 0.094 0.445 ± 0.120 0.589 ± 0.073

Method RAVLT wR
TOTAL TOT6 T30 RECOGℓ𝑞ℓ1-MTL-MRI 0.576 ± 0.077 0.536 ± 0.085 0.516 ± 0.041 0.444 ± 0.079 0.523 ± 0.082ℓ𝑞ℓ1-MTL-PET 0.548 ± 0.103 0.497 ± 0.124 0.490 ± 0.092 0.409 ± 0.098 0.481 ± 0.081ℓ𝑞ℓ1-MTL-MP 0.593 ± 0.079 0.547 ± 0.086 0.529 ± 0.038 0.450 ± 0.075 0.540 ± 0.077ℓ𝑞ℓ1-MTL-ALL 0.618 ± 0.072 0.563 ± 0.077 0.546 ± 0.027 0.446 ± 0.085 0.554 ± 0.069ℓ𝑞ℓ1-MKMTL-MRI 0.585 ± 0.069 0.533 ± 0.093 0.511 ± 0.044 0.434 ± 0.077 0.517 ± 0.079ℓ𝑞ℓ1-MKMTL-PET 0.559 ± 0.110 0.508 ± 0.111 0.503 ± 0.085 0.432 ± 0.081 0.488 ± 0.075ℓ𝑞ℓ1-MKMTL-MP 0.617 ± 0.080 0.561 ± 0.100 0.541 ± 0.057 0.462 ± 0.079 0.543 ± 0.075ℓ𝑞ℓ1-MKMTL-ALL 0.654 ± 0.071 0.577 ± 0.082 0.560 ± 0.038 0.444 ± 0.087 0.561 ± 0.068ℓ2,1ℓ𝑞-MKMTL-MRI 0.594 ± 0.070 0.554 ± 0.080 0.536 ± 0.033 0.459 ± 0.071 0.534 ± 0.082ℓ2,1ℓ𝑞-MKMTL-PET 0.563 ± 0.104 0.510 ± 0.111 0.501 ± 0.081 0.436 ± 0.095 0.495 ± 0.072ℓ2,1ℓ𝑞-MKMTL-MP 0.621 ± 0.075 0.582 ± 0.083 0.564 ± 0.046 0.475 ± 0.073 0.560 ± 0.071ℓ2,1ℓ𝑞-MKMTL-ALL 0.637 ± 0.068 0.593 ± 0.077 0.575 ± 0.041 0.479 ± 0.081 0.570 ± 0.067

on ADNI dataset illustrate that the multikernel multitask
learning method not only yields superior performance on
regression performance but also is a powerful tool for fusing
multimodalities data.
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and R. S. J. Frackowiak, “Predicting clinical scores from mag-
netic resonance scans in Alzheimer’s disease,” NeuroImage, vol.
51, no. 4, pp. 1405–1413, 2010.

[5] J. Ye, M. Farnum, E. Yang et al., “Sparse learning and stability
selection for predicting MCI to AD conversion using baseline
ADNI data,” BMC Neurology, vol. 12, article no. 46, no. 1, 2012.

[6] Y. Zhang and D.-Y. Yeung, “A convex formulation for learning
task relationships in multi-task learning,” in Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence, UAI
2010, pp. 733–742, Catalina Island, California, USA, July 2010.

[7] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task
feature learning,”Machine Learning, vol. 73, no. 3, pp. 243–272,
2008.



Computational and Mathematical Methods in Medicine 13

[8] H. Wang, F. Nie, H. Huang et al., “Sparse multi-task regression
and feature selection to identify brain imaging predictors
for memory performance,” in Proceedings of the 2011 IEEE
International Conference on Computer Vision, ICCV 2011, pp.
557–562, Barcelona, Spain, November 2011.

[9] H. Wang, F. Nie, H. Huang et al., “High-Order Multi-Task
Feature Learning to Identify Longitudinal Phenotypic Markers
for Alzheimers Disease Progression Prediction,” in in Advances
in Neural Information Processing Systems (NIPS), 2012.

[10] B. Gu and V. S. Sheng, “A robust regularization path algorithm
for ]-support vector classification,” IEEETransactions onNeural
Networks and Learning Systems, 2016.

[11] B. Gu, V. S. Sheng, K. Y. Tay,W. Romano, and S. Li, “Incremental
support vector learning for ordinal regression,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 26, no. 7,
pp. 1403–1416, 2015.

[12] M. Gönen and E. Alpaydın, “Multiple kernel learning algo-
rithms,” Journal of Machine Learning Research, vol. 12, pp. 2211–
2268, 2011.

[13] P. Jawanpuria and J. S. Nath, “Multi-task multiple kernel learn-
ing,” in Proceedings of the 11th SIAM International Conference
on Data Mining, SDM 2011, pp. 828–838, Mesa, Arizona, USA,
April 2011.

[14] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature
learning,” in in: Advances in neural information processing
systems, pp. 41–48, 2007.

[15] J. Liu and J. Ye, “Efficient l1/lq norm regularization,” Arxiv
preprint arXiv 1009.

[16] J. Zhou, J. Chen, and J. Ye, “Clustered multi-task learning
via alternating structure optimization in,” Advances in Neural
Information Processing Systems, pp. 702–710, 2011.

[17] S. Ji and J. Ye, “An accelerated gradient method for trace
norm minimization,” in Proceedings of the 26th International
Conference On Machine Learning (ICML ’09), pp. 457–464,
ACM, June 2009.

[18] J. Zhou, J. Liu, V. A. Narayan, and J. Ye, “Modeling disease
progression via multi-task learning,” NeuroImage, vol. 78, pp.
233–248, 2013.

[19] R. S. Desikan, F. Ségonne, B. Fischl et al., “An automated labeling
system for subdividing the human cerebral cortex onMRI scans
into gyral based regions of interest,” NeuroImage, vol. 31, no. 3,
pp. 968–980, 2006.

[20] X. Liu, P. Cao, D. Zhao, and A. Banerjee, “Multi-task Spare
Group Lasso for Characterizing AlzheimerΓs Disease in,” 5th
Workshop on Data Mining for Medicine and Healthcare, p. 49,
2016.

[21] J. Wan, Z. Zhang, J. Yan et al., “Sparse Bayesian multi-task
learning for predicting cognitive outcomes from neuroimaging
measures inAlzheimer’s disease,” inProceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2012, pp. 940–947, USA, June 2012.

[22] N. R. Draper and H. Smith, Applied Regression Analysis, John
Wiley & Sons, New York, NY, USA, 3rd edition, 1981.

[23] J. Liu and J. Ye, “Efficient Euclidean projections in linear time,”
in Proceedings of the 26th International Conference On Machine
Learning, ICML 2009, pp. 657–664, can, June 2009.

[24] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet,
“Simple MKL,” Journal of Machine Learning Research, vol. 9, pp.
2491–2521, 2008.

[25] J. Chen, J. Zhou, and J. Ye, “Integrating low-rank and group-
sparse structures for robust multi-task learning,” in Proceedings

of the 17th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD’11, pp. 42–50, San Diego,
Calif, USA, August 2011.

[26] J. Zhou, “Multi-task learning in crisis event classification,” Tech.
Rep., http://www. public. asu. edu/jzhou29.



Stem Cells 
International

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

MEDIATORS
INFLAMMATION

of

Endocrinology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Disease Markers

Hindawi
www.hindawi.com Volume 2018

BioMed 
Research International

Oncology
Journal of

Hindawi
www.hindawi.com Volume 2013

Hindawi
www.hindawi.com Volume 2018

Oxidative Medicine and 
Cellular Longevity

Hindawi
www.hindawi.com Volume 2018

PPAR Research

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Immunology Research
Hindawi
www.hindawi.com Volume 2018

Journal of

Obesity
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Computational and  
Mathematical Methods 
in Medicine

Hindawi
www.hindawi.com Volume 2018

Behavioural 
Neurology

Ophthalmology
Journal of

Hindawi
www.hindawi.com Volume 2018

Diabetes Research
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Research and Treatment
AIDS

Hindawi
www.hindawi.com Volume 2018

Gastroenterology 
Research and Practice

Hindawi
www.hindawi.com Volume 2018

Parkinson’s 
Disease

Evidence-Based 
Complementary and
Alternative Medicine

Volume 2018
Hindawi
www.hindawi.com

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/sci/
https://www.hindawi.com/journals/mi/
https://www.hindawi.com/journals/ije/
https://www.hindawi.com/journals/dm/
https://www.hindawi.com/journals/bmri/
https://www.hindawi.com/journals/jo/
https://www.hindawi.com/journals/omcl/
https://www.hindawi.com/journals/ppar/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jir/
https://www.hindawi.com/journals/jobe/
https://www.hindawi.com/journals/cmmm/
https://www.hindawi.com/journals/bn/
https://www.hindawi.com/journals/joph/
https://www.hindawi.com/journals/jdr/
https://www.hindawi.com/journals/art/
https://www.hindawi.com/journals/grp/
https://www.hindawi.com/journals/pd/
https://www.hindawi.com/journals/ecam/
https://www.hindawi.com/
https://www.hindawi.com/

